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With the Rouse-Zimm differential equation of the spring-bead model, the 
distribution function of N-~- 1 beads 7J(x, y,z, t) [here x denotes (x0, 
xl ..... xu), and similarly for y and z] is explicitly solved with the two different 
initial conditions: the Gaussian and delta distribution functions. We find 
that although the mean end-to-end distances obtained from the two initial 
conditions are the same, the expressions of the mean square end-to-end 
distances are different. We also obtain the expression for the mean and mean 
square end-to-end distances analytically from the Langevin equation with 
the delta initial distribution function. With this analytic expression, we show 
that the statistical quantities obtained from the Monte Carlo calculation are 
consistent with those obtained from the Rouse-Zimm differential equation 
if a suitable length is chosen for the time increment. 
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1. I N T R O D U C T I O N  

W i t h  the L a n g e v i n  e q u a t i o n  o f  m o t i o n  fo r  the bead- sp r ing  s ta t is t ical  m a c r o -  

molecu le ,  S i m o n  and  Z i m m  (a) used a h igh-speed  digi ta l  c o m p u t e r  to s imula t e  

the u n w i n d i n g  o f  D N A .  In  o r d c r  to ver i fy  tha t  the c o m p u t e r  t r e a t m e n t  g a v e  
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a correct representation of the analytical equation, simulation of tensile 
relaxation for a series of polymers was carried out by these workers. The 
agreement between the computer simulation of the Langevin equation and 
the analytical solution via the Rouse-Zimm treatment of polymer dynamics 
was very good for the quantities they compared. However, the initial con- 
ditions of the two treatments were different in that the N -- 1 beads of  the 
machine calculation were initially distributed along the x axis by the delta 
function, while the beads of the Rouse-Zimm treatment were initially dis- 
tributed by the Gaussian function. In Section 2, we propose a method of 
simulating the initial position of beads by the Gaussian distribution function. 
In Section 3, we first obtain the expression for the mean and mean square 
end-to-end distances analytically from the Langevin equation with the delta 
initial distribution function. Second, with these analytic expressions, we 
show that the mean end-to-end distance obtained from the computer simula- 
tion of Simon and Zimm should agree with that of the Rouse---Zimm approach 
if a suitable length is chosen for the time increment At. Third, since Simon 
and Zimm obtained the mean square end-to-end distance via the Rouse- 
Zimm treatment with the Gaussian initial distribution function, we show 
that this mean square end-to-end distancc should be different from that of 
Simon and Zimm's computer result. In Section 4, the distribution function 
of N - "  1 beads tP'(x, y, z, t) [here, x denotes (x0, xz ..... XN), and similarly 
for y and z] is explicitly solved with the two different initial conditions. 
Earlier, Zimm 12~ solved tF(x, y,z,  t) of  a linear tensile relaxation for the 
steady-state case. The Langevin equation can be applied in studying un- 
winding of  a DNA-like helix/1.3~ In this case, however, it is not possible to 
obtain a solution of the Langevin equation analytically, and only the Monte 
Carlo work is available. In Section 5, we show that the analytic expression 
obtained in Section 3 is very uscful in estimating the time increment A t  that 
should be uscd for the Monte Carlo study. The statistical quantities obtained 
from the Monte Carlo simulation with too large At  would not represent the 
correct quantities that can be obtained from the Rouse-Zimm equation. 

2. C O M P U T E R  S I M U L A T I O N  OF T H E  M O T I O N  OF BEADS 
W I T H  T H E  L A N G E V I N  E Q U A T I O N  

The motion of a chain of beads connected by ideal springs diffusing 
through a medium has been treated by Rouse ~al and Zimm c2). in the "free- 
draining" case, the equation of motion of N + 1 beads can be represented 
by the following equation: 

p(fti -- ui') . . . .  D[~(ln 7S)l~u~] --  (kTIb~,2)(--ui_~ + 2u, --  ui+~), 

u _ ~ = u o ,  UN+I--Uu (I) 
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where u represents either the x, y, or z coordinate, k T  is Boltzmann's constant 
times the absolute temperature, p is a friction constant, and b~ 2 is the mean 
square distance between the successive beads in the u direction and is simply 
equal to b,, 2 ==- b2/s for all u's in a homogeneous s-dimensional system. In 
Eq. (1), ~ '  is the x-, y-, or z-directional velocity that the fluid would have 
at position i if the beads were absent. The first and second terms on the right- 
hand side of  the equation represent the Brownian motion term and the spring 
force term, respectively. The distribution function of N . -  1 beads tp" in 
Eq. (1) is to be determined from the equation of continuity: 

N 

i : -0  u = x , y , z  

The Monte Carlo work can be performed by decouplmg Eqs. (1) and (2). 
The term - - [D ~(ln W)/~u~] At in Eq. (1) can be replaced by B~,i(At, t), which 
is defined as the net Brownian displacement of  molecule i within a time 
interval At. Thus, for z~/ = 0, Eq. (1) may be rewritten in a difference form as 

ui(t -?- At) = u,(t) i- B,,i(At, t) -- cr At[- ui-a(t) -? 2ui(t) --  ui-. ~(t)] (3) 

where ~ is defined as kTs/b2p. This is the well-known Langevin equation. In 
the above equation. 

B~(At,  t) ~ ~ AU~(j, t) (4) 
.4=1 

where A Ui(j,  t) is the distance traveled by the ith bead due to the Brownian 
motion in t h e j  th impact, and n is the number of  impacts during an interval 
At. We assume that AUi( j ,  t) results from a uniform random displacement 
with an amplitude a centered around molecule i. Then, AU~(j,  t) can be 
obtained from a quasirandom number R,,~, which is uniformly distributed 
between 0 and 1 and is generally available as one of the computer library 
routines. Thus, A Ui is related to R,~ by 

AUi ~-- a(l -- 2R,i)  (5) 

where the amplitude a is further related to the other molecular parameters: ~I~ 

a = (6D/v) ~/'z b(6~r/sv) '/'~ (6) 

Simon and Zimm derived a special case of  Eq. (4), in that the quantities n, v, 
and At were taken to be unity. Equation (4) is the most general form since as 
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n increases, the distribution of B,~ becomes Gaussian according to the central 
limit theorem. By substituting Eqs. (4)-(6) into Eq. (3), we obtain 

u~(t A t )  == ui(t) - c r A t [ - u i _ l ( t )  2ui(t) - u,:+z(t)] 

-',- b(6cr/sv) I.'~ ~ [1 --  2R~( . j ,  t)] (7) 

With given initial positions of  N + 1 beads and for given or, b, and v, the 
Monte Carlo study can be performed with Eq. (7). If we like to simulate the 
motion of beads which are initially distributed by the delta initial distribution 
function, we should let the initial position of the beads be 

x~(O) = d i- hi (8) 

where d and h are the distances between the origin and zeroth bead and 
between the successive beads, respectively. The beads may be initially distrib- 
uted by the Gaussian distribution function. The Gaussian initial distribu- 
tion of  N + 1 beads can be determined as follows. 15~ First, we pick two 
random numbers R~ and R2 from a pseudorandom number generator. Second, 
if [(--log Rz --  1) 2 + 2 log R~] is positive, we pick two new random numbers. 
I f  this quantity is zero or negative, then the position of ith bead is taken to be 

x~(O) = d-~- hi • (D/g)  l/~ log R 1 
(9) 

= d -i- hi b~ log R1 

where the plus sign is taken if the random number R 3 is less than 0.5; other- 
wise, the minus sign is taken. By determining the initial position of  N + I 
beads by the above process, the Monte Carlo study on the motion of  a chain 
of  beads can be performed. 

Simon and Zimm carried out the Monte Carlo study on the tensile 
relaxation of 31-, 61-, 81-, 121- and 241-bead models with n = v = At  = 1 
and the internally consistent parameters: a = 0.320, b = 10, and a = 8. 
The N + 1 beads were initially distributed according to Eq. (8), where 
d---- 0 and h - b. In the next section, we will show that the mean square 
end-to-end distance obtained from Eq. (9) is different from that obtained 
from Eq. (8). 

3. A N A L Y T I C  S O L U T I O N  OF T H E  M E A N  A N D  
M E A N  S Q U A R E  E N D - T O - E N D  D ISTANCES 
FROM T H E  L A N G E V I N  E Q U A T I O N  

Z i m m  c2~ and S imon and Z i m m  ~I~ obtained the expression for the 
mean end-to-end distance for a tensile stress applied to the ends o f  a linear 
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polymer by multiplying by x.~.---x 0 on both sides of Eq. (2) and then 
integrating it: 

N 

(x,,,. - x0} = ( f /p , r )  ~ (Qt~'k --  Qo~) 2 e ~ (10) 
10. o d d  

By the same procedure, Simon (~ obtained the expression for the mean 
square cnd-to-cnd distance as 

( ( x x -  x0)"} -= ((x:~ . . . .  x0)Y + (D./c~) ~ (Qx~: -- Q,)k)"//~:: (! 1) 
I: , o d d  

Simon and Zimm also obtained the mean end-to-end distance by the Monte 
Carlo calculation with the delta initial distribution of beads, i.e., Eq. (8), and 
found a beautiful agreement with Eq. (3). In this section, we plan to obtain 
analytically the mean and mean square end-to-end distances from the 
Langevin equation and show that the mean square end-to-cnd distance 
obtained from the initial condition Eq. (8) will not agree with that of  Eq. (11). 

The difference equation (3) may be rewritten using a matrix notation 

u(t + A t )  -.-- u(t) + B,,(At, t) -- aAt[a] u(t) (12) 

where B~(At ,  t )  is a column vector whose ith component is Bui(t) .  In the 
above equation, [A] is a tridiagonal matrix whose components consist of 

A0o = A,v:v -- l 

A i i =  2 for 1 , ~ i  ~ N - -  1 (13) 

A , _ z  = A i - l i  --=- Aid.l: = Aii+1 -~- - -1  

It is easier to solve Eq. (12) in the normal coordinates g, ~, and ~;, with 

x = [ Q ] g ,  y = [ Q ] n ,  and z =  [Qlg (14) 

where [Q] is a matrix, whose element Q,j is the i th component of the eigen- 
vector ,l,j of  the matrix [A]. With this transformation, Eq. (12) becomes 

~(t + A t )  := g(t)  + [Q]r Be(t ) ._ e[A] g(t)At (15) 

and similarly for 71 and g, where [A] is a diagonal matrix whose diagonal 
elements consist of the eigenvalues Ai, and the superscript T means the 
transpose of  the matrix. The above difference equation has the solution of 
the following form: 

:.. - -  QksBe~(At , 1) (I - c r A i  A t )  z (16) 
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where I is an integer defined as [t/At]. The explicit forms of Ai and Q~j are 
given by (~) 

A~ ~ 4 sin2[k~r/2(N + 1)] (17) 

and 

Qz~ == [2/(N-i- 1)] 1'2 cos[rrk(l -- �89 + 1)], k even 

= [2/(N + 1)] ~/~ sin[rrk(l --.~.N)/(N -1- 1)], k odd (18) 

Q~o - 1/(N q- l)Z/2 

In case of a linear tensile relaxation, the end-to-end distance, L(t, Bx), 
for a given set of random numbers B~ can be obtained from Eq. (16) as 

N 

L(t, B~) -- xN(t) -- x0(t) = ~ (aNi -- Qo~) ~i(t) 
i = 0  

= ~ (QN~ -- Q0,:) ~(0)(1 -. aA, At) '  
i~.0 

-t- ~ Qk~B,,k(At, l) (1 -- ~ra~ At)  t (.19) 
t- ,0 t: ,=O 

The quantity ~,(0) in Eq. (16) can be obtained from the initial distribution of 
N + I beads as follows. Let N-t- 1 beads be initially distributed linearly 
along the x axis with an equal spacing; i.e., let the initial distribution function 
of N § 1 beads be a delta function. With an explicit knowledge on Q~. and 
A~ given by Eqs. (17) and (18), it is not difficult to verify that 

N N 

~:,(0) : :  ~ Qk,xk(O)= ~ Q, , (d- ' , -hk)  
k=O k=O 

= h ( Q N , -  Qo,)/A, (20) 

where d and h are the distances between the origin and zeroth bead and 
between the successive beads, respectively. The last equality follows from the 
property that L'kQk, = 0 and by evaluating L'~JcQk~ by summation by parts. (s) 
Let us denote the mean of L(t, B~.) by (L(t ,  B~)>. Since B~z is a random 
number taken from a symmetric function according to Eq. (5), the second 
term of the RHS of Eq. (19) vanishes, and by substituting Eq. (20) into (19), 
we obtain 

<L(t, B~:)> =- 17 ~ (QN, - Oo,)" (1 - erA, At)'/A, (21) 
i: ~o d d  

As a/~i At --~ 0, Eq. (21) bccomes the analytic expression given by Eq. (10). 
Simon and Zim evaluated L(t, B~) by using the Monte Carlo method and 
compared the mean value of L(t, B~) with the analytic expression given by 
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Eq. (10). Thus,  it is not at all surprising that  they obtained such a good 
agreement  between the analytic result and the machine calculation. 

The expression for the mean square end-to-end distance can be obtained 
by squaring L(t, Bx) and taking the mean.  By squaring Eq. (19), we find 
that  the square of  the first term of  the RHS of  the second equality is jus t  
(L(t ,  B~)) 2, that  the cross-term between the first and second terms vanishes 
due to the proper ty  <B~i(l)) - 0, and that  the square of  the second term 
contains the factor <B~,i(l) Be~(l')). This term can be evaluated f rom Eqs. (4) 
and (5): 

= Z Z <A u/j, t) A i / j ' ,  r)> 
j ' = l  j 1 

f ' 
. -  "~ ... "~ AU~(j , l )  A b c ( j  , l ' )  

j ' = l  j = l  - a  �9 - a  

J=O i:::() 1 o 

--  (2D/p) ~ 8i~,/31z,Sjj, --- 2D(At )8 i /8u"  (22) 
j--1 if, I 

where w m is the probabi l i ty  of  occurrence of  different values for AU~(i,l). 
With Eq. (22) and the proper ty  27kQk~O~.~, = 8;~,, the last term of  L"(t, Be) 
can be summed by the geometr ic  series. Thus,  we obtain 

D (Q,,,-~ - Qo~) 2 1 -.- (1 --  ~A~ At)  22 (23) 
<LO(t, B~)> = <L(t, B~)>" - -  --- ~ )~ 1 --  ..~(rA, At  

(Y / = o d d  

As At ~ O, the above expression becomes 

<L2(t, Be)) = <L(I, Bx)) 2 -~ (D/g) E (QNi - Qoi) 2 (1 --  e-2~ (24) 
/=odd  

This expression does not agree with Eq. (l l) o f  a linear tensile relaxation. It 
is because the initial condit ions for the two cases are different. The initial 
distr ibution o f  N + 1 beads of  the machine calculation of  Simon and Z i m m  
is the delta function along the x axis, while that  of  the analytic approach  is 
the Gauss ian  distribution function. 

]n the next section, we obtain the distribution function ~ (x ,  y, z, t) with 
two different initial distribution functions: 

~t N--1 

~(x ,  y, z, 0) = exp --(3/2b") ~ [(x;.j~l - -  exS..j+i>) 2 
5=0 

-t- (Yr - <Ys,~-.-I>) "z 't- (zj.~.+, - -  < Z ] , ] . F I > ) 2 ] I  (25a) 
) 
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where xxj+z = x~ - -  x,+z and (xj.~+l) = h, (yj. j .~l) = (z~.~+a) = 0; and 

hU(x, y, z, 0) : ~(x0 --  d) 3(Y0) 3(z0) 3(x~ - d - -  h) 3(ya) 3(za) 

• "'" 3(xN - -  d - -  N h )  3 ( y u )  ~ ( zu )  (25b) 

4. D I S T R I B U T I O N  F U N C T I O N  OF N 4 - 1  BEADS 
IN F R E E - D R A I N I N G  CASE 

In order  to derive the mean  and mean square end-to-end distances for  
the bead-spring model  o f  Rouse and Z imm,  it is not necessary to have an 
explicit form for tP'(x, y, z, t). However ,  there would be many  cases where we 
need to know the distr ibution funct ion explicitly. In this section, we solve 
for  W(x, y, z, t) in Eq. (2) for  a linear tensile relaxation. Let  us consider the 
case in which equal and opposi te  forces of  m a g n i t u d e f ( t )  are applied to the 
ends of  the chain along the x-axis direction. T h e f ( t )  is equal to 

f ( t )  : f  for  t ~<0 and f ( t ) - - O  for  t > 0  (26) 

By substi tuting Eq. (1) into Eq. (2) and with the above initial condition, we 
lind tha t  

U, - X , y , z  

- -  [ f ( t ) /p] (~ t f f  /~'u) �9 e (27) 

where the superscr ipt  T means  the t ranspose of  the vector, and e is a co lumn 
vector  with e0 . . . . .  1, eN = 1, and e~ = 0 for  1 < i < N - -  1. The notat ion 
u (or ~/~u) is defined as a column vector  representing either x, y, or  z (or ~/~x, 
~)/~y, or ~'/~z) whose ith componen t  is u~ (or ~/~u~). With the t ransformat ion  
discussed in Section 3 [cf. Eq. (14)], Eq. (27) becomes 

U 

- -  [ f ( t ) / p ]  l (28) 

where E~ is equal to t h e j  th componen t  of  the vector  [ Q ] r .  e. In order  to solve 
Eq. (28), let us introduce the function ~ ( k ,  p, q, t), which is the Fourier  
t ransform of  ~(g ,  ~1, g, t): 

, .zo ~cv 

~(k ,  p, q, t) - :  .I o "'" ~ o tp(~, rl ' ~, t) e x p [ -  i(k �9 ~j -!- p �9 ~q Jr- q " 4)] d~j d~q(29)d~ 
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In Eq. (29), the integration runs over 3N + 3 coordinates. Multiplying 
Eq. (28) by exp[--i(k �9 g - ,  p �9 ~ + q �9 ~)] and integrating, we obtain 

N 

8~J/8t - ~ Z Z Z [ -Duj ~ -- ~uJAJ(8~J/Suj)l -:- [if(O/P] EskJ~ (30) 
j=-0 uj=ki .p t ,q  j 

For t ~ 0, we have OtP/~t = 0 a n d f ( t )  =J~  hence, from Eq. (30), we 
obtain 

tP'(k, p, q, t) =-, exp , - -  2 [(D/2crai)(k~" Pfi t -  qj~) -- if(%kffp~rts)] 
)=1. 

t ~. 0 (31) 

When t is greater than zero, the last term of Eq. (30) vanishes by Eq. (26), and 
it can be solved by separation of all the indcpendent variables. That is, ~ is 
equal to the product over all j of  the function ~b5, which consists of the 
product Ks(kj) Pj(pj)Qs(qs)Tj( t ) .  By substituting this expression into 
Eq. (30), we find the particular solutions of the form 

:: Cik5 7)J q5 exp[-vsaAjt -- (D/2crAs)(kk" -~- p52 --i- q52)] (32) 

where v~- - ~xj "-/35 + )'5 and C5 can be determined from the initial condition 
that ~o at t = 0 should be continuous. Here, ~b 5 is a linear combination of all 
the particular solutions of (s~(c~ 5 ,/35, )'5). Hcnce, ~P may be expressed as 

j=O j=O L m,*~=O 

--: f i x  x cj( , ,,,, , , ) k / p : , , q :  
)=0 l ,m,n.  0 

• exp[--(l  -[- m -t- n) (rA~t --- (D/~Aj)(kfl -i- pj" + qsZ)] (33) 

The term exp(ifE~k/p(rAs) in Eq. (31) should be equal to C5(l, m, n) k /p /~q/ ' .  
From this, we find that m -- n - - 0  and C5 -- (l/l!)(ifc/p(rAs) ~. The tP'(k,p,q,t) 
is equal to 

N 

tP'(k, p, q, t) = l-I cxp[--(D/2(~As)(kJ 2 + pjZ -t- qs') -? (if~ffPcrAs) k5 e-~ (34) 
j = l  

We note that the normalization condition, ~(0, 0, 0, t) = 1, is satisfied and 
from Eq. (34), we may obtain the expression for the nth moment (sel ')  using 
the relation 

<r = i"[6~(V/ekJ']k:_p.,=o (35) 

Thc ~(g, n, g, t) can be obtained from Eq. (34) by multiplying it by 
(I/2~r)e-~+~ ezp(ik - g + ip �9 rl + iq �9 g) and integrating from --oo to +oo.  

822!6/213-2 
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The integration is a s tandard one, which can be found from mathematical  
tables, with the result 

• exp{(~ --- (~>)r [A](~ -- (~5) + nr[A] n �9 i- ~r[A] ~} 

-- [ ~  (c;a;/2~rD) a.'' ] 

x 

(36) 

where  (1~) is a column vector whose j th  component  is equal to (-fE/paA~) 
exp(--a,~fl). Transforming back to the x, y, and z coordinates,  we find from 
Eq. (36) 

tp(x, y, z, t) = exp{--(~/2D)[(x -- (x ) )  r [A](x - (x ) )  -~- yr[A] y -t- zr[A] z]} 

= exp i - (3 /2b2)  Z [(xs..;..t - (x ja . . t ) ) " -T  y;2a-, z,o-,d~ 
j=0 ) 

(37) 

where we define u~.~+~ -=- ui --  ui~_~. In the above equation, ( x )  is a column 
vector whose ith component  is the mean distance of  the ith bead at t, 

<&) --- h ~ Q,:k(Qm, - Qoa.) e "a*:t/Ak (38) 
k=odd  

where h ~ f / p m  When the external currents ui is zero or in a steady state, 
Eq. (37) becomes Eq. (18) of  Zimm's  work. c') The  mean and mean square 
end-to-end distances can be obtained from Eq. (37) and are given by Eqs. (10) 
and (11), respectively. 

The initial distribution function that we considered above corresponds 
to the Gaussian distribution function. We can also find the expression for the 
distribution function whose initial distribution of  N-t -  1 beads is given by 
Eq. (25b). By the similar procedure as we used above, we find that 

t/'(~, n, r  
N O/~j 

:= 1-] 2~rD(1 --  e-2~ t) j = l  

• exp --(a/2D) ~ (l - - e  -2~at) [(~j - -  (scJ))z T r/7 + ~/'1 

(39) 
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Fig. 1. The mean and mean square end-to-end distances of  a linear chain with three 
beads. The crosses are obtained by the Monte  Carlo calculation with Eq. (7), where 
v - -  A t  = 1, a ~= 0�9 and b = 16. Initially, the beads are distributed by Eq. (8), where 
d = - -16  and h = 16. The solid lines are obtained from Eqs. (10) and (24). The vertical 
lines measure the standard deviations,  where 50,000 independent runs are taken�9 
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Fig. 2. The mean and mean square end-to-end distances o f  a linear chain with eleven 
beads�9 The crosses are obtained by the Monte  Carlo calculation with Eq. (7), where 
v = A t  = 1 ,  a - 0.125, and b ~: 16. Initially, the beads are distributed by Eq. (8), where 
d . . . . .  5h and h = 16. The solid lines are obtained from Eqs. (I0)  and (24). The vertical 
lines measure the standard deviations, where 400 independent runs arc taken. 
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Fig. 3. The m e a n  end-to-end distance o f  a l inear chain  with three beads and with the 
reflecting wall  at x = --  16. Initially, the beads are distributed by Eq. (8), where  d . . . .  16 
and h = 16. The parameter  in Eq. (7) are taken as b - 16 and n ..... I, and 30,000 inde- 

pendent  runs are taken.  
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Fig. 4. The  m e a n  square end-to-end distance o f  a l inear cha in  with three beads and with 
the reflecting wall  at x - - 1 6 .  Initially, the beads are distributed by Eq. (8), where  
d = - - 1 6  and h = 16. The  parameters  in Eq. (7) are taken  as  b -- 16 and n - 1, and 
30,000 independent  runs are taken.  
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where (~:~) ~= ~:j(0) e-"a~ t. The 7 z obtained from the Gaussian initial distribu- 
tion function is expressed in terms of the distance between successive beads 
u~.i+l as givcn by Eq. (37). However, Eq. (39) does not reduce to a function 
of u~.~+z. From Eq. (39), we find that the mean and mean square end-to-end 
distances have the same expression as those given by Eqs. (10) and (24), 
respectively. Equation (39) was obtained by Wang and Uhlenbeck (Note IV 
in Appendix of Ref. 9). However, the time-dependent distribution function 
for a linear tensile relaxation as given by Eq. (37) is derived for the first time 
in this paper. 

5. D I S C U S S I O N  

When a boundary condition is imposed on Eq. (7), it is not possible to 
obtain (L(t, B~)~ in a closed form. Only the Monte Carlo method is available 
for this case. Since this method is an iterative process starting from an 
initial position of  beads, the error accumulates as the time progresses if we 
choose too large At. Too small a value of At, however, would take too much 
computer time. Equations (21) and (23) give a good estimate of the right 
magnitude of At for given c~ and N. Since Ai is inversely proportional to 
(N -_ 1) 3 for small i, and only low values of i contribute to the summation 
for sufficiently large t, At  could be chosen bigger for larger N. In order to 
demonstrate this numerically, we have computed the mean and mean square 
end-to-end distances of the linear chain by the Monte Carlo method with 
v - - -A t  = 1, ~ - - 0 . 1 2 5 ,  and b = 16. Initially, the beads are distributed 
by Eq. (8) where d -- --hN/2 and h = 16. The crosses in Figs. 1 and 2 are 
obtained by taking 50,000 and 400 independent runs, respectively, where 
the vertical lines indicate the magnitude of the standard deviations. The 
solid lines are obtained from Eqs. (10) and (24). As shown in these tigures, 
the Monte Carlo result is very good for N = 10, while it is quite poor for 
N := 2. We have also studied the effect of  a choice of At on Eq. (7) by placing 
a simple boundary condition (Figs. 3 and 4). Initially, the zeroth, first, and 
second beads are placed at x = -- 16, 0, and 16 along the x axis, respectively. 
The reflecting wall is located at x . . . .  16. The parameters in Eq. (7) are 
taken to be b = 16 and n = 1. As we see from Fig. 4, we find that the 
computed values of  (L"(t)) differ for each At in the interval of  
I/4 ~< ~/lt , ~ 1/64. 
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